
AN13371
TPMS Clocks Calibration
Rev. 1 — 1 October 2021 Application note

Document information
Information Content

Keywords FXTH, NTM88, clocks, calibration, oscillator drift, temperature

Abstract FXTH and NTM88 devices include three internal oscillators, a low frequency,
medium frequency, and high frequency oscillator. The oscillators drift with
temperature which may impact user applications that rely on precise timing.
This application note documents how to compensate for the drift.

NXP Semiconductors AN13371
TPMS Clocks Calibration

Rev Date Description

1 20211001 • Initial release

Revision history

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
2 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

1 Introduction

The FXTH and NTM88 devices include three internal oscillators: the Low Frequency
Oscillator (LFO) which has a target frequency of 1 kHz, the Medium Frequency Oscillator
(MFO) which has a target frequency of 125 kHz, and the High Frequency Oscillator
(HFO) which is derived from the MFO and has a target frequency configurable by the
user of either 1 MHz, 2 MHz, 4 MHz or 8 MHz. The bus clock is derived from the HFO
and has a frequency equal to half the frequency of the HFO, so either 0.5 MHz, 1 MHz, 2
MHz or 4 MHz.

These oscillators drift with temperature, which can impact the user application in case it
relies on precise timings. This application note explains how to compensate for the drift.
The first part focuses on the LFO and the second part on the Bus Clock.

2 Calibrating the PWU to compensate for the LFO drift

2.1 Purpose
In TPMS devices, the Low Frequency Oscillator (LFO) has a targeted frequency of 1 kHz
and clocks several blocks. Among them is the Periodic Wake-Up (PWU) block.

The actual frequency of the LFO varies from one device to another and with temperature.
The frequency deviation is specified in the data sheet of the product1.

A possible consequence of LFO frequency drift is a higher power consumption. To
illustrate, we can take the example of an application in which the PWU is configured
to wake-up the TPMS device from STOP1 every 30 seconds to send the tire pressure
value. If the LFO has an actual frequency of 1.2 kHz instead of 1 kHz, then the PWU
wakes up the TPMS approximately 20 % more often than expected. The additional wake-
ups result in a higher power consumption, and shorter battery life.

On the contrary, if the actual LFO frequency is lower than 1 kHz the TPMS will wake-
up less often than expected: instead of sending a frame every 30 seconds, the TPMS
could send a frame every 40 seconds, for example, which may not meet the application
requirements.

The PWU period is configured with the WDIV value in the PWUDIV register. Refer to the
user manuals[1],[2] for more information. The purpose of the WDIV calibration described
in this section is to calculate a WDIV value based on the actual LFO frequency. Note the
WDIV calibration does not modify the LFO frequency.

2.2 Principle of WDIV calibration
The Periodic Wake-Up block is clocked by the Low Frequency Oscillator. The PWU can
be configured to generate a periodic wake-up and/or a periodic reset. The wake-up and
reset periods are configured in two or three steps:

1. The WDIV field of PWUDIV register configures the prescaler for the incoming LFO
clock period. The output period is WCLK.

2. For periodic wake-up and/or periodic reset: the PWUCS0_WUT field configures the
number of WCLK clocks before the next periodic wake-up interrupt is generated. The
output period is RCLK.

1 Contact an NXP representative to have access to the data sheets.
AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
3 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

3. For periodic reset only: the PWUCS1_PRST field configures the number of RCLK
clocks before the next periodic reset is generated.

When the LFO frequency is exactly equal to 1 kHz, configuring WDIV = 31 results in a
1 second output period for WCLK. In this case, if the user wants to configure a periodic
wake-up of 30 seconds and a periodic reset of 60 seconds, WUT field must be set to 30
and PRST field must be set to 2.

aaa-043541

LFO clock Prescaler 1LFO period = 1 ms Prescaler 2 Wake Up Period = 30 s

Reset Period = 60 sPrescaler 3

Frequency = 1 kHz PWU_WDIV = 31 PWUCS0_WUT = 30

PWUCS1_PRST = 2

WCLK = 1 s

RCLK = 30 s

Figure 1. Wake-up and Reset period configuration when LFO frequency is 1 kHz

However, the LFO frequency is not always equal to 1 kHz: it varies from one device to
another, and for one given device the LFO frequency drifts with temperature meaning
that the LFO frequency varies when temperature varies.

When the actual LFO frequency deviates from 1 kHz, this implies that configuring WDIV
to 31 does not result in an exact 1 second output for WCLK: for example, if the actual
LFO frequency is equal to 1.2 kHz, the resulting WCLK period will be 833 ms. In this
case, if WUT is set to 30, this results in a 25 second periodic wake-up, instead of the 30
second periodic wake-up expected by the user.

aaa-043542

LFO clock Prescaler 1LFO period = 0.833 ms Prescaler 2 Wake Up Period = 25 s

Reset Period = 50 sPrescaler 3

Frequency = 1.2 kHz PWU_WDIV = 31 PWUCS0_WUT = 30

PWUCS1_PRST = 2

WCLK = 833 ms

RCLK = 25 s

Figure 2. Wake-up and Reset period configuration when LFO frequency is 1.2 kHz

The purpose of the LFOCAL functions performing WDIV calibration is to have WCLK = 1
second.

For that, the functions calculate the actual LFO frequency and return a calibrated value of
WDIV i.e. a value of WDIV which results in WCLK = 1 second. For example, if the actual
LFO frequency is 1.2 kHz, the LFOCAL function will return value 43, meaning that WDIV
must be set to 43 instead of 31 to have WCLK = 1 second. If the actual LFO frequency is
800 Hz, the LFOCAL function returns the value 19.

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
4 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

LFO clock Prescaler 1LFO period = 0.833 ms Prescaler 2

Output of TPMS LFOCAL

Output of TPMS LFOCAL

Wake Up Period = 30 s

Reset Period = 60 sPrescaler 3

WCLK = 1 s

RCLK = 30 s

aaa-043543

LFO clock Prescaler 1LFO period = 1.25 ms Prescaler 2 Wake Up Period = 30 s

Reset Period = 60 sPrescaler 3

Frequency = 1.2 kHz PWU_WDIV = 43 PWUCS0_WUT = 30

PWUCS1_PRST = 2

Frequency = 800 Hz PWU_WDIV = 19 PWUCS0_WUT = 30

PWUCS1_PRST = 2

WCLK = 1 s

RCLK = 30 s

Figure 3. Wake-up and Reset period configuration with WDIV calibrated

2.3 Calculation of the LFO actual frequency with 26 MHz crystal or bus
clock
To return a calibrated value of WDIV, it is necessary to calculate the actual frequency
of the LFO. In the example above, this means we need to know that the actual LFO
frequency is 800 Hz to be able to calculate that WDIV must be set to 19.

To calculate the actual LFO frequency, we use a reference clock, meaning a clock more
precise than the LFO. The functions developed to perform WDIV calibration use either
the external 26 MHz crystal or the bus clock. In these functions, TPM1 timer is used to
count the number of RF crystal or bus clocks periods per LFO period; this allows for
the calculation of the actual frequency of the LFO and then calculate a calibrated WDIV
value.

The 26 MHz RF crystal is the most precise clock that can be used to calculate the LFO
frequency: the frequency deviation of the RF crystal on the whole temperature range is
negligible, much smaller than the frequency deviation of any internal clock of the TPMS,
including the bus clock. However, note that using the 26 MHz crystal to measure the LFO
frequency requires the RF block to be enabled when the LFOCAL function is executed,
which consumes additional power. The extra current coming from the use of the crystal
can be estimated to be equivalent to the sum of the RF transmission current at 315 MHz,
5 dBm during ~750 µs and the Interframe period current with IFPD=0 during the rest of
the function execution time.

Current coming from use of crystal

RF transmission current at
315 MHz, 5 dBm

Interframe period current
with IFPD = 0

~750 µs LFOCAL function
execution time

t

aaa-043544

Figure 4. Equivalent of the current consumed during the execution of the LFOCAL function
coming from the use of the 26 MHz crystal

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
5 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

The RF transmission current at 315 MHz, 5 dBm, and the Interframe period current with
IFPD=0 are specified in the data sheet2 of the product.

For applications in which an external 26 MHz crystal is not present, or in case the user
wants to avoid the extra current consumption brought by the use of the crystal, the
bus clock can be used as reference clock. However, unlike the RF crystal, it drifts with
temperature – but its drift remains much smaller than the LFO drift. The range of bus
clock frequency is specified in the data sheet of the product2.

2.4 Functions performing WDIV calibration

2.4.1 For the FXTH

The function TPMS_LFOCAL is available in the FXTH firmware and firmware library and
is described in the FXTH Firmware User Guide[3]. This function uses the 26 MHz external
crystal to calculate the LFO frequency. It returns valid results when the LFO frequency
range remains between 660 Hz and 1900 Hz, which is the case for FXTH87 devices but
not necessarily for devices of the FXTH87E family. As a consequence, this function is not
recommended for FXTH87E devices.

The library “New TPMS LFOCAL” that can be downloaded from the TPMS Software
webpage[5] includes functions compatible with both FXTH87 and FXTH87E devices,
which use either the 26 MHz external crystal or the bus clock as reference clock. These
functions are described in the user guide provided with the library.

2.4.2 For the NTM88

Two functions are available in the firmware library: TPMS_LFOCAL, which uses the 26
MHz crystal as reference clock, and TPMS_LFOCAL_BUSCLK, which uses the bus
clock. Both functions are described in the NTM88 Firmware User Guide[6].

2.5 Implementing WDIV calibration in the application
As explained in the previous section, the LFOCAL functions return a calibrated WDIV
value. The functions measure the LFO frequency and return a WDIV value to have
WCLK equal to 1 second. The WDIV compensated value depends on the LFO frequency.
This implies that the WDIV value must be re-calculated when the LFO frequency varies.
For example, if the WDIV value is first calculated when the LFO frequency is equal to 800
Hz the LFOCAL function will return a WDIV value of 19; but if the LFO frequency varies
after some time and becomes equal to 700 Hz, this WDIV value of 19 will not be accurate
anymore, it needs to be re-calculated: the LFOCAL function needs to be executed again
and will return the value 12 which must be used instead of 19.

• How to know when the LFO frequency changes and the compensation function needs
to be executed again?

The LFO frequency drifts with temperature so the WDIV compensated value needs to
be recalculated when temperature changes. It is recommended to execute the LFOCAL
function when temperature varies by 20 °C. A possible implementation for the application
is described below.

2 Contact an NXP representative to have access to the data sheets.
AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
6 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

Inside the application code, an array of 8 bytes UINT8 WDIV[8] is declared in the PARAM
section maintained in STOP1. The whole device temperature range from -40 °C to 125
°C is divided into 8 ranges of 20 °C as shown in Figure 5. Each byte of the WDIV[] array
represents the WDIV compensated value on a given temperature range.

For example, WDIV[3] contains the compensated WDIV value when temperature is
between 20 °C and 40 °C. In the application, when the temperature is between 20 °C and
40 °C for the first time the LFOCAL function is executed and the WDIV value is stored
in WDIV[3]. Then each time the current temperature is again between 20 °C and 40 °C
the compensated value stored in WDIV[3] can be used, without needing to execute the
LFOCAL function again.

This means the LFOCAL function will be executed a maximum of eight times in all the
device lifetime, corresponding to once per temperature range. Once the WDIV value has
been calculated for a temperature range, the result is stored in WDIV[] array and there is
no need to execute the LFOCAL function again for this temperature range.

aaa-043545

WDIV[0]
UINT8 WDIV[8]

WDIV calibrated value for
each temperature range

Output of
TPMS_COMP_TEMPERATURE

Temperature
(°C)

UINT8 temp_index

WDIV[1] WDIV[2] WDIV[3] WDIV[4] WDIV[5] WDIV[6] WDIV[7]

0 1 2 3 4 5 6 7

< 35 35 55 75 95 115 135 155

< -20 °C -20 °C 0 °C 20 °C 40 °C 60 °C 80 °C 100 °C

> 155

> 100 °C

Figure 5. Correspondence between the index of WDIV[8] array and temperature

An example flow is shown in Figure 6.

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
7 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

aaa-043546

no

yes
We need to calculate the WDIV
value for this temperature range

The WDIV compensated
value has already been
calculated for this
temperature range, no need
to do the calculation again

Initialize WDIV array: WDIV[i] = 0xFF;

Set PWUDIV_WDIV = WDIV[temp_index]

Application continues

Execute TPMS_READ_TEMPERATURE and
TPMS_COMP_TEMPERATURE;

Find the current temperature range temp_index;

no

yes

yes

no

Execute LFOCAL function and store the result:
WDIV[temp_index] = LFOCAL output

WDIV[temp_index] == 0xFF?
↔ Does WDIV[temp_index]
contain init value meaning

the WDIV calculation has not
been done for this

temperature range?

Wake up from
PWU?

First time after
POWER ON?

Reset

Figure 6. Example of WDIV calibration implementation in the application

The TPMS projects available in the FXTH or NTM88 Starter Package implement the
algorithm above. Download the Starter Packages from the TPMS Software webpage[5] to
see an example of source code.

Note: An alternate implementation would be to execute the LFOCAL function at each
PWU wake-up without checking the current temperature. In this case, the calibrated
WDIV value would be calculated again at each PWU wake-up. The drawback of this
alternate implementation is that it would consume more power than executing the
LFOCAL function only when temperature changes because it consumes more power
to execute the LFOCAL function at every wake-up than performing a temperature
acquisition and compensation at every wake-up and performing the LFOCAL function a
maximum of eight times in the device lifetime.

3 Calibrating the Bus Clock frequency

3.1 Purpose
The actual frequency of the bus clock varies from one device to another and with
temperature. The frequency range is specified in the data sheet of the product3.

The execution time of the instructions performed by the program directly depend on
the bus clock frequency. Also, the bus clock can be configured as clock source for
TPM1 timer, which can be used to perform delays in the application. This implies that

3 Contact an NXP representative to have access to the data sheets.
AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
8 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

applications that require precise timings may need to calibrate the bus clock frequency to
ensure a maximum timing accuracy.

3.2 Principle of bus clock calibration
It is possible to measure the actual frequency of the bus clock using the 26 MHz external
crystal as reference. However, it is not possible to adjust the bus clock frequency directly,
only the MFO frequency can be modified.

aaa-043547

MFO HFO

The application calculates the bus clock
frequency and then adjusts the MFO frequency

BUSCLK

Figure 7. Principle of bus clock calibration

The firmware function TPMS_MFOCAL measures the actual bus clock frequency
and returns a value indicating the percentage of deviation compared to the target
frequency. This function is available in the FXTH firmware and firmware library and

the NTM88 firmware library, and described in the firmware user guides
[3],[6]

. Note that
in the description of the function it is indicated that the percentage of deviation of the
MFO frequency is returned, but it is actually the percentage of deviation of the bus clock
frequency. When TPMS_MFOCAL function returns value 128 it means that the frequency
of the bus clock is the target frequency. Each LSB away from this value corresponds to a
deviation of 0.78 %; when the frequency is close to the target frequency this corresponds
to approximately 975 Hz.

Register SIMOTRM[7:0] allows for the modification of the MFO frequency. At production,
NXP trims this register so that the bus clock frequency is as close as possible to its target
frequency at 29 °C. Increasing or decreasing the register value by one count increases or
decreases the MFO frequency by approximately 250 Hz. The application can update this
register at any time, and the new value will be maintained until a reset occurs. At reset,
the value trimmed by NXP at production is loaded into SIMOTRM register, overwriting the
value that the application configured.

The MFO, HFO, and bus clock frequencies drift with temperature, which implies that a
different SIMOTRM value needs to be calculated when temperature varies.

3.3 Implementing bus clock calibration in the application

3.3.1 Adjusting the bus clock frequency

The principle of adjusting the bus clock frequency is the following: the application uses
the MFOCAL function to calculate the bus clock deviation with a ~975 Hz precision, and
then adjusts the MFO frequency via SIMOTRM register with a ~250 Hz resolution. It
may take several iterations to reach the target frequency, which would imply executing
the MFOCAL function potentially several times. Since doing so would consume more
power, the user could configure the maximum number of times MFOCAL function can
be executed in the algorithm. In the example of implementation described below, the
variable Nb_executions keeps track of how many times the MFOCAL function was
executed and the value MAX_EXE_NB represents the maximum number of times the
TPMS_MFOCAL function can be executed.

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
9 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

An example of implementation is detailed in the flow below:

• When the bus clock frequency is calculated to be equal to the target frequency,
MFOCAL function returns 128. So, the drift is calculated as the difference between the
value returned by MFOCAL function and value 128. The drift is positive when the bus
clock frequency is higher than the target frequency, and negative otherwise.

• SIMOTRM register is first adjusted by a number of counts equal to four times the drift
value, since 975 Hz ~= 4*250 Hz (refer to the paragraph above).

• After that, and as long as the drift is not 0 and the MFOCAL function has not been
executed more than the max number of times fixed by the user, the new drift is
calculated and SIMOTRM register adjusted in consequence, but by smaller steps,
count by count.

• A minimum bus clock settling delay of 500 µs is necessary between the moment MFO
frequency is adjusted and the moment the bus clock frequency is measured.

aaa-043548

Drift = TPMS_MFOCAL() - 128;
Nb_executions = 1;

SIMOTRM += Drift * 4;

Delay 500us;
Drift = TPMS_MFOCAL() - 128;

Nb_executions ++;

SIMOTRM ++;

We adjust the MFO
frequency by smaller steps

yes

yes

no

no

no

Is (Nb_executions >=
MAX_EXE_NB) OR

(Drift == 0)?

Is Drift > 0?

SIMOTRM - -;
yes

Is Drift < 0?

Start

End

Figure 8. Example of flow to adjust SIMOTRM

The corresponding source code is the following:

/* MFOCAL execution */
#define MAX_EXE_NB 3
void vfnCalibSIMOTRM (void)
{
UINT8 u8MfocalValue, u8NbExecutions;
INT8 i8Drift;
 TPMS_RF_ENABLE(1);
 u8MfocalValue = TPMS_MFOCAL();
 u8NbExecutions = 1; // We have executed MFOCAL once

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
10 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

if (u8MfocalValue != 255) // 255 is error code for crystal not
 present
 {
i8Drift = u8MfocalValue - 128;
 SIMOTRM += (i8Drift * 4);
while ((u8NbExecutions < MAX_EXE_NB) && (i8Drift != 0) &&
 (u8MfocalValue != 255))
 {
 Delay_us(100); // 500 µs delay to let time to bus clock
 frequency to stabilize
u8MfocalValue = TPMS_MFOCAL();
u8NbExecutions ++; // We have executed MFOCAL once more
i8Drift = u8MfocalValue - 128;
if ((u8MfocalValue != 255) && (i8Drift > 0))
SIMOTRM ++;
else if ((u8MfocalValue != 255) && (i8Drift < 0))
SIMOTRM --;
 }
 }
 TPMS_RF_ENABLE(0);
return;
}
//
==
// Delay in us:
// us4 delay
// 0 10.6 µs
// 1 15.0 µs
// 2 19.4 µs
// 3 23.8 µs
// 4 28.2 µs
// 10 53.4 µs
// 20 96.2 µs
// 255 1099 µs
// delay = 10.6 µs + (us4 * 4.28 µs)
// us4 = (delay-10.6 µs)/4.28 µs
void Delay_us(UINT8 us4)
{
UINT8 u8;
for (u8=0; u8<us4; ++u8)
{
__asm NOP;
__asm NOP;
__asm NOP;
__asm NOP;
 }
return;
}

3.3.2 Storing SIMOTRM value for each temperature range

The bus clock frequency changes with temperature, so it is necessary to re-calculate
SIMOTRM value when temperature changes. It is recommended to re-calculate the
value when temperature varies by 20 °C. A possible implementation for the application is
described below.

Inside the application code, an array of 8 bytes UINT8 gau8SIMOTRM[8] is declared
in the PARAM section maintained in STOP1. The whole device temperature range
from -40 °C to 125 °C is divided into 8 ranges of 20 °C as shown in Figure 9. Each byte

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
11 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

of the gau8SIMOTRM[] array represents the calibrated SIMOTRM value on a given
temperature range.

For example, gau8SIMOTRM[3] contains the calibrated SIMOTRM value when
temperature is between 20 °C and 40 °C. In the application, when the temperature is
between 20 °C and 40 °C for the first time, SIMOTRM value is calculated and stored in
gau8SIMOTRM[3]. Then each time the current temperature is again between 20 °C and
40 °C the calibrated value of SIMOTRM stored in gau8SIMOTRM[3] can be used, without
needing to re-calculate it again.

This means the calculation of SIMOTRM will be executed a maximum of eight times in all
the device lifetime, corresponding to once per temperature range. Once the SIMOTRM
value has been calculated for a temperature range, it is stored in gau8SIMOTRM[] array
and there is no need to calculate it again for this temperature range.

aaa-043549

gau8SIMOT
RM[0]

UINT8 gau8SIMOTRM[8]
SIMOTRM calibrated value for

each temperature range

Output of
TPMS_COMP_TEMPERATURE

Temperature
(°C)

UINT8 temp_index

gau8SIMOT
RM[1]

gau8SIMOT
RM[2]

gau8SIMOT
RM[3]

gau8SIMOT
RM[4]

gau8SIMOT
RM[5]

gau8SIMOT
RM[6]

gau8SIMOT
RM[7]

0 1 2 3 4 5 6 7

< 35 35 55 75 95 115 135 155

< -20 °C -20 °C 0 °C 20 °C 40 °C 60 °C 80 °C 100 °C

> 155

> 100 °C

Figure 9. Correspondence between the index of gau8SIMOTRM[8] array and temperature

An example of flow is shown in Figure 10.

Reset

Applicaon connues…

Inialize gau8SIMOTRM[] array:
gau8SIMOTRM[i] = 0xFF;

Execute TPMS_READ_TEMPERATURE and
TPMS_COMP_TEMPERATURE;

Find the current temperature range temp_index;

Calculate and update SIMOTRM value and store
it:

gau8SIMOTRM[temp_index] = SIMOTRM;

First me
aer POWER

ON?

Is a precise
bus clock
frequency

needed now?

gau8SIMOTRM[temp_index] ==
0xFF?
 Does

gau8SIMOTRM[temp_index]
contain init value meaning the
SIMOTRM calculaon has not

been done for this temperature
range?

YES

NO

NO

The SIMOTRM calibrated
value has already been

calculated for this
temperature range, no

need to do the calculaon
again

We need to calculate the
SIMOTRM value for this

temperature range

YES

YES

NO

Reset

First me
aer POWER

ON?

Set SIMOTRM = gau8SIMOTRM[temp_index]

SIMOTRM is loaded with the
value calculated at producon

Figure 10. Example of flow storing the SIMOTRM value for each temperature range

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
12 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

The source code corresponding to the temp_index search and adjustment of SIMOTRM
value is the following:

#define DEFAULT_RANGE_INDEX 3
#define LIMIT_LOWEST_RANGE 35
#define RANGE_LENGTH 20
#define SIMOTRM_MAX_INDEX 7
#define SIMOTRM_INIT_VALUE 0xFF
/**
 * This functions checks if SIMOTRM needs to be re-calculated
 * or not, depending on whether its value has been calculated
 * for the currenttemperature range.
 * If it has, SIMOTRM is updated with the stored value.
 * If not, it is calculated and its value is stored.
 * PRE-REQUISITE: valid compensated temperature measurement
 * must be stored in gu8CompTemp.
 **/
void Calibrate_SIMOTRM_with_Temperature (void)
{
UINT8 temp_index;
UINT8 gu8CompTemp_temporary;
/* Temperature value will be modified, store it in temporary
 variable */
gu8CompTemp_temporary = gu8CompTemp;
/* Find current temperature range in the gau8SIMOTRM array */
temp_index = 0;
while ((gu8CompTemp_temporary > LIMIT_LOWEST_RANGE) &&
 (temp_index < SIMOTRM_MAX_INDEX))
{
gu8CompTemp_temporary -= RANGE_LENGTH;
temp_index ++;
}
/* Has calibration already been done for this range? */
if (gau8SIMOTRM[temp_index] == SIMOTRM_INIT_VALUE)
{
/* Compensation has not yet been done, do it now */
vfnCalibSIMOTRM();
gau8SIMOTRM[temp_index] = SIMOTRM;
}
else
{
/* Update SIMOTRM with the value stored */
SIMOTRM = gau8SIMOTRM[temp_index];
}
return;
}

Note: An alternate implementation would be to re-calculate the SIMOTRM value each
time the application needs a precise bus clock frequency without checking the current
temperature. The drawback of this alternate implementation is that it would consume
more power than calculating SIMOTRM only when temperature changes because it
consumes more power to calculate SIMOTRM value at every wake-up than performing
a temperature acquisition and compensation at every wake-up and performing the
SIMOTRM calculation a maximum of eight times in the device lifetime.

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
13 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

3.4 Note on using the 26 MHz crystal to perform both WDIV and bus
clock calibrations
Performing WDIV calibration using the 26 MHz crystal as reference and performing
bus clock calibration both require the RF block to be enabled when the calibrations are
performed. The RF block can be enabled by calling the function TPMS_RF_ENABLE(1),
which turns on the block and then performs a ~300 µs settling delay. This function is
described in the firmware user guides[3],[6]. In applications using the crystal for both WDIV
and bus clock calibration, the two calibrations can be performed one after the other,
without disabling the RF block in between. In other words, the application can enable
the RF block, perform both calibrations, and then disable the RF block. This allows a
bit of power saving by not disabling and enabling again the RF block between the two
calibrations.

4 References

[1] FXTH87E — FXTH87E, Family of Tire Pressure Monitor Sensors, reference manual
https://www.nxp.com/docs/en/reference-manual/FXTH87ERM.pdf

[2] UM11227 — NTM88 family of tire pressure monitor sensors, user manual
https://www.nxp.com/docs/en/user-guide/UM11227.pdf

[3] FXTH87xx02FWUG — FXTH87xx02 Embedded Firmware User Guide, user guide
https://www.nxp.com/docs/en/user-guide/FXTH87xx02FWUG.pdf

[4] FXTH87xx1xFWUG — FXTH87xx11 and FXTH87xx12 embedded firmware user guide, user guide
https://www.nxp.com/docs/en/user-guide/FXTH87xx1XFWUG.pdf

[5] TPMS Software Webpage —
https://www.nxp.com/design/sensor-developer-resources/tpms-software:TPMS-SOFTWARE

[6] UM11145 — NTM88 Firmware Library User Guide, user guide
https://www.nxp.com/docs/en/user-guide/UM11145.pdf

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
14 / 17

https://www.nxp.com/docs/en/reference-manual/FXTH87ERM.pdf
https://www.nxp.com/docs/en/user-guide/UM11227.pdf
https://www.nxp.com/docs/en/user-guide/FXTH87xx02FWUG.pdf
https://www.nxp.com/docs/en/user-guide/FXTH87xx1XFWUG.pdf
https://www.nxp.com/design/sensor-developer-resources/tpms-software:TPMS-SOFTWARE
https://www.nxp.com/docs/en/user-guide/UM11145.pdf

NXP Semiconductors AN13371
TPMS Clocks Calibration

5 Legal information

5.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

5.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not
give any representations or warranties, expressed or implied, as to the
accuracy or completeness of such information and shall have no liability
for the consequences of use of such information. NXP Semiconductors
takes no responsibility for the content in this document if provided by an
information source outside of NXP Semiconductors. In no event shall NXP
Semiconductors be liable for any indirect, incidental, punitive, special or
consequential damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the removal or replacement
of any products or rework charges) whether or not such damages are based
on tort (including negligence), warranty, breach of contract or any other
legal theory. Notwithstanding any damages that customer might incur for
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative
liability towards customer for the products described herein shall be limited
in accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes
no representation or warranty that such applications will be suitable
for the specified use without further testing or modification. Customers
are responsible for the design and operation of their applications and
products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications
and products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with
their applications and products. NXP Semiconductors does not accept any
liability related to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications or products, or
the application or use by customer’s third party customer(s). Customer is
responsible for doing all necessary testing for the customer’s applications
and products using NXP Semiconductors products in order to avoid a
default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this
respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used

by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of
non-infringement, merchantability and fitness for a particular purpose. The
entire risk as to the quality, or arising out of the use or performance, of this
product remains with customer. In no event shall NXP Semiconductors, its
affiliates or their suppliers be liable to customer for any special, indirect,
consequential, punitive or incidental damages (including without limitation
damages for loss of business, business interruption, loss of use, loss of
data or information, and the like) arising out the use of or inability to use
the product, whether or not based on tort (including negligence), strict
liability, breach of contract, breach of warranty or any other theory, even if
advised of the possibility of such damages. Notwithstanding any damages
that customer might incur for any reason whatsoever (including without
limitation, all damages referenced above and all direct or general damages),
the entire liability of NXP Semiconductors, its affiliates and their suppliers
and customer’s exclusive remedy for all of the foregoing shall be limited to
actual damages incurred by customer based on reasonable reliance up to
the greater of the amount actually paid by customer for the product or five
dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall
apply to the maximum extent permitted by applicable law, even if any remedy
fails of its essential purpose.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Security — Customer understands that all NXP products may be subject
to unidentified or documented vulnerabilities. Customer is responsible
for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s
applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use
in customer’s applications. NXP accepts no liability for any vulnerability.
Customer should regularly check security updates from NXP and follow up
appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make
the ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may
be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

5.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
15 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

Figures
Fig. 1. Wake-up and Reset period configuration

when LFO frequency is 1 kHz4
Fig. 2. Wake-up and Reset period configuration

when LFO frequency is 1.2 kHz4
Fig. 3. Wake-up and Reset period configuration

with WDIV calibrated ...5
Fig. 4. Equivalent of the current consumed during

the execution of the LFOCAL function
coming from the use of the 26 MHz crystal 5

Fig. 5. Correspondence between the index of
WDIV[8] array and temperature 7

Fig. 6. Example of WDIV calibration
implementation in the application8

Fig. 7. Principle of bus clock calibration9
Fig. 8. Example of flow to adjust SIMOTRM 10
Fig. 9. Correspondence between the index of

gau8SIMOTRM[8] array and temperature 12
Fig. 10. Example of flow storing the SIMOTRM

value for each temperature range 12

AN13371 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2021. All rights reserved.

Application note Rev. 1 — 1 October 2021
16 / 17

NXP Semiconductors AN13371
TPMS Clocks Calibration

Contents
1 Introduction ... 3
2 Calibrating the PWU to compensate for the

LFO drift ...3
2.1 Purpose ..3
2.2 Principle of WDIV calibration3
2.3 Calculation of the LFO actual frequency

with 26 MHz crystal or bus clock5
2.4 Functions performing WDIV calibration 6
2.4.1 For the FXTH .. 6
2.4.2 For the NTM88 .. 6
2.5 Implementing WDIV calibration in the

application ..6
3 Calibrating the Bus Clock frequency 8
3.1 Purpose ..8
3.2 Principle of bus clock calibration 9
3.3 Implementing bus clock calibration in the

application ..9
3.3.1 Adjusting the bus clock frequency 9
3.3.2 Storing SIMOTRM value for each

temperature range ... 11
3.4 Note on using the 26 MHz crystal

to perform both WDIV and bus clock
calibrations ...14

4 References ... 14
5 Legal information ..15

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2021. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 October 2021
Document identifier: AN13371

	1 Introduction
	2 Calibrating the PWU to compensate for the LFO drift
	2.1 Purpose
	2.2 Principle of WDIV calibration
	2.3 Calculation of the LFO actual frequency with 26 MHz crystal or bus clock
	2.4 Functions performing WDIV calibration
	2.4.1 For the FXTH
	2.4.2 For the NTM88

	2.5 Implementing WDIV calibration in the application

	3 Calibrating the Bus Clock frequency
	3.1 Purpose
	3.2 Principle of bus clock calibration
	3.3 Implementing bus clock calibration in the application
	3.3.1 Adjusting the bus clock frequency
	3.3.2 Storing SIMOTRM value for each temperature range

	3.4 Note on using the 26 MHz crystal to perform both WDIV and bus clock calibrations

	4 References
	5 Legal information
	Figures
	Contents

